设置
  • 日夜间
    随系统
    浅色
    深色
  • 主题色

中国科学家揭示能量跨膜运输新机制

2025-03-18 16:11:42 来源: 中国青年网

3月13日,中国科学院分子植物科学卓越创新中心范敏锐研究员团队联合西湖大学吴旭冬研究员团队、复旦大学张金儒研究员团队和浙江大学苏楠楠研究员团队在国际学术期刊《自然》(Nature)发表论文,首次解析病原体/植物叶绿体ATP(腺苷三磷酸)运输蛋白的三维结构及运输ATP的分子机制。这一研究为设计药物治疗相关疾病以及改造蛋白提高作物产量提供了重要思路。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

ATP是腺苷三磷酸的简称,是一种核苷酸,它是细胞内的主要“能量货币”。所有生物体都依赖能量来维持基本的生理功能,而过去40多年研究发现,能量代谢缺陷的细胞内寄生病原体可以从宿主细胞获取ATP,但具体的分子机制一直不清楚。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

以人体为例,人体中ATP的总量只有大约0.1摩尔。人体细胞每天的能量需要水解200-300摩尔的ATP,这意味着每个ATP分子每天要被重复利用2000-3000次。ATP不能被储存,因为ATP的合成后必须在短时间内被消耗。如果病原体“疯狂”获取ATP,影响到正常细胞摄入ATP,那么人就会生病。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

在自然界中,一类特殊的病原体必须寄生在宿主细胞内部才能存活,被称为专性胞内病原体。这些病原体包括沙眼衣原体(引发性传播疾病和传染性失明)、肺炎衣原体(引发非典型肺炎)、立克次氏体(引发流行性斑疹伤寒)及微孢子虫(在免疫力低下人群中引发微孢子虫病)等。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

研究发现,这些专性胞内病原体由于自身能量代谢能力退化,无法独立产生足够ATP,因此必须从宿主细胞获取能量。在它们的细胞膜上存在一种特殊的蛋白质——ATP/ADP(腺苷三磷酸/腺苷二磷酸)运输蛋白(NTT),它能将宿主细胞的ATP转运到病原体内部,并将ADP和磷酸根(Pi)运回宿主细胞。病原体既能偷偷“窃取”宿主细胞能量,又能不让宿主“觉察到”,从而实现生长繁殖。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

NTT蛋白对病原体生存有一定的重要性,早期研究提出若能抑制其活性,则可能开发出新型抗生素或治疗药物。另一方面,增强叶绿体或淀粉体NTT蛋白的活性,可能提高植物光合作用效率,增加农作物产量。然而,尽管NTT研究已有50多年,其具体的ATP识别和跨膜运输机制仍不清晰,阻碍了药物设计和蛋白改造的进展。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

范敏锐团队与合作者首次解析了肺炎衣原体和植物叶绿体NTT蛋白的高分辨率三维结构,发现尽管二者来源不同,但三维结构高度相似,印证了叶绿体NTT蛋白来源于衣原体的假说。研究发现ATP(或ADP+Pi)结合位点位于NTT蛋白中央,由保守的氨基酸特异识别ATP。结合结构分析和功能实验,研究表明NTT蛋白由N端和C端两个相对刚性的结构域组成,二者之间通过相对摆动促进ATP结合、跨膜运输和释放。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

据介绍,这一研究揭示了衣原体和叶绿体NTT蛋白识别及跨膜运输ATP的分子机制,为开发针对专性胞内病原体的新型抗生素提供了分子基础,有助于改造NTT蛋白提升作物光合作用效率和农业增产。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

3月13日,中国科学院分子植物科学卓越创新中心范敏锐研究员团队联合西湖大学吴旭冬研究员团队、复旦大学张金儒研究员团队和浙江大学苏楠楠研究员团队在国际学术期刊《自然》(Nature)发表论文,首次解析病原体/植物叶绿体ATP(腺苷三磷酸)运输蛋白的三维结构及运输ATP的分子机制。这一研究为设计药物治疗相关疾病以及改造蛋白提高作物产量提供了重要思路。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

ATP是腺苷三磷酸的简称,是一种核苷酸,它是细胞内的主要“能量货币”。所有生物体都依赖能量来维持基本的生理功能,而过去40多年研究发现,能量代谢缺陷的细胞内寄生病原体可以从宿主细胞获取ATP,但具体的分子机制一直不清楚。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

以人体为例,人体中ATP的总量只有大约0.1摩尔。人体细胞每天的能量需要水解200-300摩尔的ATP,这意味着每个ATP分子每天要被重复利用2000-3000次。ATP不能被储存,因为ATP的合成后必须在短时间内被消耗。如果病原体“疯狂”获取ATP,影响到正常细胞摄入ATP,那么人就会生病。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

在自然界中,一类特殊的病原体必须寄生在宿主细胞内部才能存活,被称为专性胞内病原体。这些病原体包括沙眼衣原体(引发性传播疾病和传染性失明)、肺炎衣原体(引发非典型肺炎)、立克次氏体(引发流行性斑疹伤寒)及微孢子虫(在免疫力低下人群中引发微孢子虫病)等。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

研究发现,这些专性胞内病原体由于自身能量代谢能力退化,无法独立产生足够ATP,因此必须从宿主细胞获取能量。在它们的细胞膜上存在一种特殊的蛋白质——ATP/ADP(腺苷三磷酸/腺苷二磷酸)运输蛋白(NTT),它能将宿主细胞的ATP转运到病原体内部,并将ADP和磷酸根(Pi)运回宿主细胞。病原体既能偷偷“窃取”宿主细胞能量,又能不让宿主“觉察到”,从而实现生长繁殖。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

NTT蛋白对病原体生存有一定的重要性,早期研究提出若能抑制其活性,则可能开发出新型抗生素或治疗药物。另一方面,增强叶绿体或淀粉体NTT蛋白的活性,可能提高植物光合作用效率,增加农作物产量。然而,尽管NTT研究已有50多年,其具体的ATP识别和跨膜运输机制仍不清晰,阻碍了药物设计和蛋白改造的进展。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

范敏锐团队与合作者首次解析了肺炎衣原体和植物叶绿体NTT蛋白的高分辨率三维结构,发现尽管二者来源不同,但三维结构高度相似,印证了叶绿体NTT蛋白来源于衣原体的假说。研究发现ATP(或ADP+Pi)结合位点位于NTT蛋白中央,由保守的氨基酸特异识别ATP。结合结构分析和功能实验,研究表明NTT蛋白由N端和C端两个相对刚性的结构域组成,二者之间通过相对摆动促进ATP结合、跨膜运输和释放。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

据介绍,这一研究揭示了衣原体和叶绿体NTT蛋白识别及跨膜运输ATP的分子机制,为开发针对专性胞内病原体的新型抗生素提供了分子基础,有助于改造NTT蛋白提升作物光合作用效率和农业增产。4GT流量资讯——探索最新科技、每天知道多一点LLSUM.COM

本文链接:中国科学家揭示能量跨膜运输新机制http://www.llsum.com/show-2-11301-0.html

声明:本网站为非营利性网站,本网页内容由互联网博主自发贡献,不代表本站观点,本站不承担任何法律责任。天上不会到馅饼,请大家谨防诈骗!若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。

上一篇: 人工智能精准助力科研加速

下一篇: 吃冰棍启发科学家揭示融冰机制,死磕十年研制气体检测纳米材料

热门资讯

  • 培育一批专利产业化样板企业

    近日,国家知识产权局等五部门联合印发了《专利产业化促进中小企业成长计划实施方案》(以下简称《实施方案》)。《实施方案》提出,到2025年底,中小企业知

  • 人工智能重新定义职场技能

    据阿根廷布宜诺斯艾利斯经济新闻网2月19日报道,在人工智能(AI)迅速重新定义就业格局的今天,通常被称为“软”技能的人类技能成为最有韧性、最有价值

  • “95后”的无人机“造像师”

    “当时是怎样选中低空经济这个领域,并且来深圳发展的?”面对这个关乎事业发展的问题,“95后”台青张晏纶坦言,“这是一场面试带来的惊喜。”张晏纶来自

  • 专家:警惕常见睡眠认知误区

    3月21日是世界睡眠日,中国主题为“健康睡眠 人人共享”。近日发布的《2023年中国居民睡眠白皮书》显示,我国居民平均睡眠时长6.75小时,平均在零点后入

  • 鹊桥二号中继星成功发射 将是探月工程四期“关键一环”

    记者从国家航天局获悉,3月20日8时31分,探月工程四期鹊桥二号中继星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空。科技日报记者 付

  • 英伟达AI风暴席卷医疗行业 “AI制药”是风口还是泡沫?

      英伟达AI风暴席卷医疗行业 “AI制药”是风口还是泡沫?  季媛媛  全球医疗健康行业正刮起最强AI风暴。  当地时间3月18日,全球瞩目的顶级AI盛会――英伟达2024年GPU

  • 原来,中国空间站里“四季如春”

    春,推也。从草从日,草春时生也。进入春日,人们时常能在大地回暖、万物复苏中见证旺盛的生命力。一起解锁空间站里的“春日关键词”,感受太空中的“春日

  • 达摩院AI加速农业新品种培育 全球23家科研机构“尝鲜”

    记者3月21日获悉,全球植物科学期刊《分子植物》刊载了中国科学家的最新研究,中国农业科学院作物科学研究所、国家南繁研究院与阿里达摩院(湖畔实验室)

  • Sora带来的深层次影响值得关注

    2024年2月,OpenAI公司推出了文生视频人工智能(AI)模型Sora。OpenAI展示了Sora利用少量简短文字提示即可创建逼真视频的能力,并提供了包括一位女士在闪

  • 人工纳米流体突触可实现存内计算

    瑞士洛桑联邦理工学院工程学院研究团队制造了一种用于内存的新型纳米流体设备,这使他们第一次能连接两个“人工突触”。该设备为受大脑启发的液体硬

  • 聚焦AI框架技术创新 加速大模型规模化落地

    “人工智能作为数字新基建重点建设方向,前景广阔,大有作为。今年的政府工作报告更首次提出开展‘人工智能+’行动,无疑将为人工智能技术在

  • 新技术破解结核病“早发现早治疗”难题

    3月24日是第29个世界防治结核病日,我国的宣传主题是“你我共同努力,终结结核流行”。在北京大学社会化媒体研究中心21日举办的“技术升级,加速我国终

推荐资讯

  • 日榜
  • 周榜
  • 月榜